
Vol.:(0123456789)

SN Computer Science (2021) 2:275
https://doi.org/10.1007/s42979-021-00672-y

SN Computer Science

ORIGINAL RESEARCH

Study of a Hybrid Approach Towards Malware Detection in Executable
Files

 Akshara P 1 · Bhawana Rudra1

Received: 11 November 2020 / Accepted: 28 April 2021
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2021

Abstract
With the ever-increasing number of Internet users in this digital age, exposure to malicious attacks is increasing. Every day,
large volumes of malicious content are generated to exploit 0-day vulnerabilities. There is every possibility of downloading
malicious files unintentionally, which could corrupt the system and user data. With the advancements in technology and
growing dependence on digital data, malicious software detection has become a crucial task. The existing approaches need
modifications to support and detect the latest attacks. Recently, artificial intelligence-based malicious file detection meth-
ods have been proposed. In the past, most of the works analyzed the executable file features and visual features from their
corresponding images independently. Additionally, image-based analysis has been exploited for categorical classification,
i.e., finding the family once it is known to be malware. We propose a CNN-based model that extracts visual features from
malware images, which outperforms existing approaches on a benchmark dataset like MalImg. We study the effect of using
a hybrid feature set containing these visual features integrated with statically obtained opcode frequencies for the detection
of malware. Our experiments on standard datasets demonstrate that there is no significant performance improvement using
this hybrid approach.

Keywords Cyber security · Malware detection · Hybrid feature extraction

Introduction

Malware are the computer programs with malicious charac-
teristics intending to harm the operating system, steal per-
sonal information, and damage the user network. Detection
and mitigation of malware are an evolving problem in the
field of cyber security. Traditional as well as commercial
antivirus softwares (AV) available in the market usually
rely on a signature-matching method, where a local signa-
ture is required to be stored in the database for matching
patterns from well-known malware. A signature is a short
sequence of bytes (hash) that can be used to identify mal-
ware uniquely with small error rates. However, techniques

like code obfuscation, encryption, and morphing can sig-
nificantly change the malware signature. Due to this, the
signature-matching method cannot provide security against
0-day attacks as malware generation tool kits like Zeus1 can
generate many variants of the same malware using obfusca-
tion techniques [1].

Malware detection can mainly be performed in two ways
using static analysis or dynamic analysis. Certain features
are extracted from the portable executable (PE) files without
actually executing the code in static analysis. Static analysis
is safe to adopt as it does not harm the user’s system. It is
less resilient towards the encrypted and compressed malware
executables. In dynamic analysis, features are derived while
running the executable in a controlled environment called
sandbox. Dynamic analysis is more suited for real-time
detection and reveals the true nature of the code. However,
the execution path taken is the same in every run and the
analysis time is increased [2]. Researchers and anti-malware
communities have reported that using machine learning, and
deep learning-based methods, malware detection systems

This article is part of the topical collection “Cyber Security and
Privacy in Communication Networks” guest edited by Rajiv Misra,
R K Shyamsunder, Alexiei Dingli, Natalie Denk, Omer Rana,
Alexander Pfeiffer, Ashok Patel and Nishtha Kesswani.

 * Akshara P
 akshblr555@gmail.com

1 National Institute of Technology Karnataka, Surathkal, India
1 https:// www. sophos. com/ en- us/ media libra ry/ PDFs/ techn ical-
papers/ Sophos- what- is- zeus- tp. pdf.

http://orcid.org/0000-0001-6846-9153
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-021-00672-y&domain=pdf
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/Sophos-what-is-zeus-tp.pdf
https://www.sophos.com/en-us/medialibrary/PDFs/technical-papers/Sophos-what-is-zeus-tp.pdf

 SN Computer Science (2021) 2:275 275 Page 2 of 7

SN Computer Science

are more robust to code modifications. An essential compo-
nent of machine learning-based malware detection is feature
extraction from PE headers, and subsequent dimensionality
reduction of the obtained feature space, which is a chal-
lenging problem in both practical and theoretical machine
learning [3].

The proposed method is based on constructing a hybrid
feature space using enhanced feature extraction to detect
malicious executable files on Windows. The first set of
features are based on the opcode frequency, obtained from
static analysis of PE files after disassembling the executable
files. The second set is obtained from grayscale images by
converting the binary files using visual analysis and Convo-
lution Neural Network (CNN) along with a transfer learning-
based approach. The CNN model will be first trained for
detection of malware on the MalImg dataset [4] to learn the
structural features of malware based on its local image pat-
terns. It performs better than most pre-trained deep learning
models, which have been experimented in the past on the
MalImg dataset. CNN-based feature representation trans-
fer is then utilized to extract 128 features from the primary
dataset. This extended feature set yields similar performance
using only the opcode frequency features.

The main contributions of the paper are:
(i) A generic CNN architecture is proposed for image-

based malware detection, which outperforms with the previ-
ous studied pre-trained models.

(ii) A hybrid feature space containing opcode frequency
from static PE files and visual descriptors from the corre-
sponding grayscale images for the detection of malware is
explored and validated.

The rest of the paper is organized as follows. The second
section discusses about the “Related work” followed by third
section that represents the “Methodology”. The forth sec-
tion gives the “Experimental results” and “Conclusions and
future work” are drawn in last section.

Related Work

Several security researchers have applied domain-level
knowledge on PE files for static malware detection. Here, the
crucial step is the feature selection, which is mostly hand-
picked. Schultz et al. [5] introduced static feature analysis
using a data mining method to detect malware with three dif-
ferent types of static features, i.e., PE head, string sequence,
and byte sequence. Shabtai et al. [6] provided a taxonomy
for malware detection using machine learning algorithms
by reporting feature types, feature selection techniques, and
ensemble algorithms. Firdausi et al. [7] proposed an auto-
matic behavior-based malware detection approach using
Anubis, a free online dynamic analysis service to monitor

the collected samples. They used Naive Bayes, decision
trees, and k-nearest neighbors for classification.

Ahmadi et al. [8] proposed a novel paradigm to group
malware variants into different families. The authors gave
importance to feature extraction and selection methods.
The features were extracted from content and the sample
structure, so the proposed method will work on packed and
obfuscated samples. The features were grouped based on
malware behavior characteristics, and fusion is performed
according to a per-class weighting paradigm. Rathore et al.
[1] found opcode frequency to be a discriminatory feature
of PE files; they used Random Forest as a baseline and
other deep learning models for the comparison. Igor San-
tos et al. [9] proposed a hybrid malware detection system
that detects malware by combining features extracted from
opcode frequency and executing the dynamic features that
resulted in better performance compared with each alone.

Another interesting approach involves viewing this task
as an image recognition one by converting the binaries to
grayscale images and employing several vision-based tech-
niques. One of the first works that visualized malware clas-
sification through image processing was by Nataraj et al.
[4], where high-level gist descriptors were used and the
classification was done by kNNs. Sravani et al. [10] used
a Deep Learning (DL) approach that obtained slightly bet-
ter results without using gist descriptors. They compared
feature-based classical methods like kNN with DL ones to
demonstrate the superior performance [11]. Transfer learn-
ing technique was introduced using pre-trained ResNet,
VGGNet, and Inception models for malware classifica-
tion. This is because images tend to smooth out minor
within-family differences, while significant (inter-family)
differences were clearly observed [3, 11]. A generic CNN
architecture for malware classification was proposed [12,
13] and experimented on popular benchmark datasets to
obtain good accuracy. These works mainly aim at family
classification rather than detection.

The opcode sequences from PE files obtained dynami-
cally were widely studied. The major issue with this
method was the high execution time. An RNN-based
approach using API calls as features during run-time [14].
An LSTM-based approach was presented in [15], where
first an opcode vocabulary is built using opcode sequences
from the assembly code. This was then used to generate
CBOW embeddings [16], which were sent through a two-
stage LSTM model. Jipei et al. [17] proposed MalNet,
a stacked ensemble of CNN (image-based) and LSTM
(opcode sequence based) that demonstrated enhanced
performance in both malware detection and classification.
They reduced the prediction time by adopting several par-
allelization techniques. Some concerns with these tech-
niques include accounting for huge opcode sequences of

SN Computer Science (2021) 2:275 Page 3 of 7 275

SN Computer Science

variable length generated, resulting in loss of information
and the subsequent delay in procuring them and training.

Extending these works, we have made a first of its kind
attempt to detect malware by integrating features from PE
files as well as the binary images.

Methodology

The malware analysis and detection is formulated as a binary
classification task where malware and benign are two dif-
ferent classes. In this work, Malware Detection PE-Based
dataset [18] is used as the primary dataset for the study.
It contains 8970 malware and 1000 benign binary files.
Malware files are divided into five types: Locker (300),
Mediyes (1450), Winwebsec (4400), Zbot (2100), and

Zeroaccess (690). All the malware files have been collected
from VirusShare2 and Malicia Project [19]. Benign execut-
able files are taken from installed folders of applications of
legitimate software from different categories. All files have
been verified using VirusTotal 5,3 an anti-virus aggregator.
Additionally, the MalImg dataset has been used for image-
based visual analysis and to train CNN model, and then used
as a feature extractor on the primary dataset. We considered
total of 9339 grayscale images from 25 malware families.

The classification pipeline is a multi-step process, as
shown in Fig. 1. The overview of the algorithm for the pro-
posed pipeline is explained in Algorithm 1 and in detail in
the following sections.

Fig. 1 Classification pipeline

2 https:// virus share. com/.
3 https:// www. virus total. com/.

https://virusshare.com/
https://www.virustotal.com/

 SN Computer Science (2021) 2:275 275 Page 4 of 7

SN Computer Science

Feature Extraction

Opcode Frequency Feature Space

The opcode feature vector space is generated from the disas-
sembled files using static analysis of executable files. Simi-
lar to the approach adopted in [1], an exhaustive opcode
list containing 1808 opcodes is prepared. Then, the assem-
bly files are scanned to obtain the frequencies of opcodes
occurring in all the files. Some opcodes did not appear in
any file or are very similar and hence grouped or removed
accordingly. Finally, a 1431-dimensional feature space is
constructed for the analysis. To overcome class imbalance
issue, the variance threshold method is considered and fixed
the threshold at 0.01. If the variance of any opcode occur-
rence is lower than the threshold, then it is considered to be
approximately constant and would not improve the perfor-
mance of the model significantly and hence dropped.

CNN Extracted Features

Literature shows that the deep pre-trained networks such as
ResNet and VGGNet yielded poorer accuracy compared to
classical ML models like kNNs and generic CNN architec-
tures, so a custom CNN architecture as shown in Fig. 2 is
considered for our approach.

It has 4 convolution layers, followed by a pooling layer,
respectively, and 2 fully connected dense layers. Using pool-
ing layers, the model is robust to the small changes in the
images too. This model is trained on the MalImg dataset for
10 epochs using a 70-10-20 train-validation-test split, using
dropout and early stopping to prevent over-fitting. Due to 4 https:// www. gnu. org/ softw are/ binut ils/.

Data Preprocessing

The first step involves disassembling the executable
files (.exe) to assembly code (.asm). This is performed
using the object dump utility, which is a part of the GNU
Binutils package.4 For the conversion of binary file to
an image, the bytes representing the files are scanned
sequentially, and their corresponding unsigned integer is
treated as bytes of a grayscale image. Images are cre-
ated having a predefined width of 256 pixels and vari-
able height, depending on the size of the file—similar
to the approach adopted in [11]. After carrying out the
above steps and removing corrupt and encrypted files, the
final dataset under study contains 8938 malicious and 967
benign files. Since the MalImg dataset directly provides
images, no preprocessing steps are required. All images
are finally re-scaled to 256 × 256 size before feeding to
the CNN model.

https://www.gnu.org/software/binutils/

SN Computer Science (2021) 2:275 Page 5 of 7 275

SN Computer Science

class imbalance, data augmentations are tried, but led to a
decrease in accuracy. This is because most of the programs
are executed in top-to-bottom order without many jumps,
and horizontal and vertical flipping would result in flipping
the order—thus changing the program itself. This trained
model is then used on the actual dataset to extract the second
last layer’s features, i.e., FC_2.

Studies show that generic descriptors extracted from the
layers of convolutional neural networks are very powerful
[20–23]. Also, the high-level layer features are more specific
and discriminant, particularly for target tasks close to the
source task.

Compared with lower level layers, high-level layers pro-
vide better results when used out-of-the-box to feed classi-
fiers for similar tasks. These findings are statistically quanti-
fied using the Kolmogorov–Smirnov statistic (DKS), which
measures the distance between two empirical distribution
functions (EDF) P and Q [22]. In our study, the source task
on MalImg and destination task on the primary dataset is
the same, and hence, the features of the second last layer of
the CNN model, which is 128-dimensional, are extracted
from the primary dataset. This would encode a large amount
of visual knowledge from the images, specific to malware
detection. Finally, the 1559 (1431 + 128)-dimensional com-
bined feature set is obtained by concatenating the above 2
prepared sets. The 9905 × 1559 dataset is then sent to the
classification models.

Classification Models

We used Random Forest (RF) and XGBoost (XGB) for clas-
sification. Random Forest is a collection of tree predictors,
such that each tree depends on the values of a random vector
sampled independently and with the same distribution for all
trees in the forest. It consists of a large number of individual
decision trees that operate as an ensemble. Many relatively
uncorrelated trees individually vote, and the final prediction
is based on the majority. This ensures that prediction errors
are minimized.

XGBoost has been widely used in many fields to achieve
state-of-the-art results. It is an efficient implementation of
the Gradient Boosting Machine. The main idea of boosting
is to combine a series of weak classifiers with low accuracy,
sequentially, to build a robust classifier with better classifica-
tion performance. In gradient boosting, errors are minimized
by a gradient descent algorithm. By blending software and
hardware capabilities, it provides enhanced accuracy in a
short amount of time.

Fig. 2 Proposed CNN archi-
tecture: input dimension is 256
× 256 × 1. 4 Conv+Maxpool
operations using 8, 16, 32, 64
conv filters, respectively. Finally
flattened to get 512 and 128
dimensions in FC_1 and FC_2

Fig. 3 Model training accuracy

Table 1 Performance comparison on MalImg

Model Work Accuracy (%)

ResNet34 [11] 98.39
Generic CNN Ours 99.6

 SN Computer Science (2021) 2:275 275 Page 6 of 7

SN Computer Science

Experiments and Results

First, we evaluate the performance of our generic CNN
model with some of the previous works for malware
detection on MalImg dataset in Table 1. Figure 3 shows
the model’s training phase accuracy. As early stop-
ping mechanism is used, the training converges after
8 epochs.

Results indicate that our generic CNN outperforms
the very deep pre-trained networks like ResNet. Further-
more, when this model was used on the primary dataset for
direct prediction using a pure transfer learning approach,
it yielded an accuracy of 99.3%, thus representing its
generalizability.

Next, we carried out 3 different experiments to under-
stand the relative performance and improvements by adopt-
ing combinations of the prepared feature sets.

1. Using the opcode frequency feature set: this considers
only the statically obtained variance threshold opcode
features, which is in line with the approach described in
[1].

2. Using the CNN extracted features: a total of 128 features
were extracted from the primary dataset’s images using
our trained CNN model and are passed to the classifica-
tion models.

3. Combination of both feature sets: in this, both feature
sets are concatenated and sent to the classification mod-
els.

Table 2 summarizes the results of these experiments.
As observed from the results, the hybrid feature set (which
encodes a large amount of static and visual knowledge from
executables and their images) exhibits similar performance
as of the opcode frequency feature.

We further evaluated our trained model on a test set by
considering the sample of another benchmark dataset Big
2015 [24], which has more recent malware families which
were not included in our primary dataset. We obtained an
accuracy of 96%, again verifying with the obtained obser-
vation. From these results, we can say that visual features

do not seem to add significant influence towards the detec-
tion of malware samples. When both the features are used
together, the result was not improved, but when considered
the images, then there is a large enhance in accuracy.

Conclusion and Future Work

The alarming growth of malware attacks in recent years is a
major concern as it poses a serious security threat to com-
puter systems and data. Devising robust malware detection
techniques is the need of our current society to overcome
the threats. Classical signature-matching mechanisms used
by most AVs tend to become unreliable when they find new
malware. Towards this endeavor, we utilized a hybrid fea-
ture set obtained from the discriminatory feature of PE files,
opcode frequency, and high-level image descriptors from a
trained CNN model for the detection of malicious code in
the Windows executable files. However, we did not observe
any significant improvement over the opcode frequency fea-
ture set, probably due to an increase in dimensionality, but
we observed a drastic change in accuracy when the images
were used for the detection of malware. In future, we will
study the effect of integrating other features such as opcode
sequence calls information in more effective manner. We
also extend this approach to classify malware into their cor-
responding families once detected, and further processes for
better accuracy. Our study can guide future researchers who
plan to use different data sources for malware analysis [25].

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

References

 1. Rathore H, Agarwal S, Sahay S, Sewak M. Malware detection
using machine learning and deep learning. In: 6th international
conference, BDA 2018, Warangal, India, December 18–21; 2018.
https:// doi. org/ 10. 1007/ 978-3- 030- 04780-1_ 28.

 2. Cavallaro L, Saxena P, Sekar R. On the limits of information flow
techniques for malware analysis and containment. In: Zamboni
D (ed) Detection of intrusions and malware, and vulnerability
assessment. DIMVA 2008. Lecture Notes in Computer Science,
vol 5137. Springer, Berlin, Heidelberg. https:// doi. org/ 10. 1007/
978-3- 540- 70542-0_8.

 3. Chen L. Deep transfer learning for static malware classification.
2018. arxiv: 1812. 07606. pdf. Retrieved 10 Dec 2020.

 4. Nataraj L, Karthikeyan S, Jacob G, Manjunath B. Malware
images: visualization and automatic classification. 2011. https://
doi. org/ 10. 1145/ 20169 04. 20169 08.

Table 2 Observed malware detection performance

Feature set Model Accuracy (%) AUC score

Opcode frequency RF 99.4 0.987
Opcode frequency XGB 99.7 0.99
CNN extracted RF 98.9 0.969
CNN extracted XGB 98.89 0.962
Opcode frequency + CNN RF 99.4 0.981
Opcode frequency + CNN XGB 99.7 0.99

https://doi.org/10.1007/978-3-030-04780-1_28
https://doi.org/10.1007/978-3-540-70542-0_8
https://doi.org/10.1007/978-3-540-70542-0_8
http://arxiv.org/abs/1812.07606.pdf
https://doi.org/10.1145/2016904.2016908
https://doi.org/10.1145/2016904.2016908

SN Computer Science (2021) 2:275 Page 7 of 7 275

SN Computer Science

 5. Schultz M, Eskin E, Zadok F, Stolfo S. Data mining methods for
detection of new malicious executables. In: Proceedings of the
IEEE computer society symposium on research in security and
privacy; 2001, pp. 38–49. https:// doi. org/ 10. 1109/ SECPRI. 2001.
924286.

 6. Shabtai A, Moskovitch R, Elovici Y, Glezer C. Detection of
malicious code by applying machine learning classifiers on
static features: A state-of-the-art survey. Inf Secur Tech Rep.
2009;14(1):16–29. https:// doi. org/ 10. 1016/j. istr. 2009. 03. 003.

 7. Firdausi I, lim C, Erwin A, Nugroho AS. Analysis of machine
learning techniques used in behavior-based malware detection.
In: Second international conference on advances in computing,
control, and telecommunication technologies, Jakarta; 2010, pp.
201–203. https:// doi. org/ 10. 1109/ ACT. 2010. 33.

 8. Ahmadi M, Ulyanov D, Semenov S, Trofimov M, Giacinto G.
Novel feature extraction, selection and fusion for effective mal-
ware family classification. 2016. https:// doi. org/ 10. 1145/ 28577 05.
28577 13. Retrieved 10 Dec 2020.

 9. Santos I, Devesa J, Brezo F, Nieves J, Bringas POPEM. A static-
dynamic approach for machine-learning-based malware detection.
2013. https:// doi. org/ 10. 1007/ 978-3- 642- 33018-6_ 28.

 10. Sravani Y, Vikash S, Troia DF, Stamp M. Deep learning versus
gist descriptors for image-based malware classification. 2018.
https:// doi. org/ 10. 5220/ 00066 85805 530561. Retrieved 10 Dec
2020.

 11. Bhodia N, Prajapati P, Troia DF, Stamp M. Transfer learning for
image-based malware classification. 2019;2020. https:// doi. org/
10. 5220/ 00077 01407 190726. Retrieved 10 Dec.

 12. Kalash M, Rochan M, Mohammed N, Bruce NDB, Wang Y,
Iqbal F. Malware classification with deep convolutional neural
networks. In: 9th IFIP international conference on new technolo-
gies, mobility and security (NTMS), Paris; 2018, pp. 1–5. https://
doi. org/ 10. 1109/ NTMS. 2018. 83287 49.

 13. Choi S, Jang S, Kim Y, Kim J. Malware detection using malware
image and deep learning. In: International conference on informa-
tion and communication technology convergence (ICTC), Jeju;
2017, pp. 1193–1195. https:// doi. org/ 10. 1109/ ICTC. 2017. 81908 95.

 14. Pascanu R, Stokes JW, Sanossian H, Marinescu M, Thomas A.
Malware classification with recurrent networks. In: IEEE inter-
national conference on acoustics, speech and signal processing
(ICASSP), South Brisbane, QLD, Australia; 2015, pp. 1916–
1920. https:// doi. org/ 10. 1109/ ICASSP. 2015. 71783 04.

 15. Renjie L. Malware detection with LSTM using opcode language.
2019. arxiv: 1906. 04593. pdf. Retrieved 10 Dec 2020.

 16. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of
word representations in vector space. 2013. arxiv: 1301. 3781. pdf.
Retrieved 10 Dec 2020.

 17. Yan J, Qi Y, Rao Q. Detecting malware with an ensemble method
based on deep neural network. Secur Commun Netw. 2018.
https:// doi. org/ 10. 1155/ 2018/ 72470 95.

 18. Tuan AP, Phuong ATH, Thanh NV, Van TN. Malware detection
PE-based analysis using deep learning algorithm dataset. 2018.
https:// doi. org/ 10. 6084/ m9. figsh are. 66356 42. v1. Retrieved 10
Dec 2020.

 19. Nappa A, Rafique MZ, Caballero J. The MALICIA data-
set: identification and analysis of drive-by download opera-
tions. Int J Inf Secur. 2015;14:15–33. https:// doi. org/ 10. 1007/
s10207- 014- 0248-7.

 20. Razavian AS, Azizpour H, Sullivan J, Carlsson S. CNN features
off-the-shelf: an astounding baseline for recognition. In: IEEE
conference on computer vision and pattern recognition work-
shops, Columbus, OH; 2014, pp. 512–519. https:// doi. org/ 10.
1109/ CVPRW. 2014. 131

 21. Azizpour H, Razavian AS, Sullivan J, Maki A, Carlsson S. Fac-
tors of transferability for a generic ConvNet representation. IEEE
Trans Pattern Anal Mach Intell. 2015. https:// doi. org/ 10. 1109/
TPAMI. 2015. 25002 24.

 22. Garcia-Gasulla D, Parés F, Vilalta A, Moreno J, Ayguadé E,
Labarta J, Cortés U, Suzumura T. On the behavior of convolu-
tional nets for feature extraction. J Artif Intell Res. 2017. https://
doi. org/ 10. 1613/ jair. 5756.

 23. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are
features in deep neural networks? In: Proceedings of the 27th
international conference on neural information processing sys-
tems. 2014. arxiv: 1411. 1792. pdf.

 24. Ronen R, Radu M, Feuerstein C, Yom-Tov E, Ahmadi M. Micro-
soft malware classification challenge. 2018. arxiv: 1802. 10135.
pdf. Retrieved 10 Dec 2020.

 25. Pandey AK, Tripathi A, Kapil G, Singh V, Khan W, Agrawal A,
Kumar R, Khan R. Trends in malware attacks: identification and
mitigation strategies. 2020. https:// doi. org/ 10. 4018/ 978-1- 7998-
1558-7. ch004.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1109/SECPRI.2001.924286
https://doi.org/10.1016/j.istr.2009.03.003
https://doi.org/10.1109/ACT.2010.33
https://doi.org/10.1145/2857705.2857713
https://doi.org/10.1145/2857705.2857713
https://doi.org/10.1007/978-3-642-33018-6_28
https://doi.org/10.5220/0006685805530561
https://doi.org/10.5220/0007701407190726
https://doi.org/10.5220/0007701407190726
https://doi.org/10.1109/NTMS.2018.8328749
https://doi.org/10.1109/NTMS.2018.8328749
https://doi.org/10.1109/ICTC.2017.8190895
https://doi.org/10.1109/ICASSP.2015.7178304
http://arxiv.org/abs/1906.04593.pdf
http://arxiv.org/abs/1301.3781.pdf
https://doi.org/10.1155/2018/7247095
https://doi.org/10.6084/m9.figshare.6635642.v1
https://doi.org/10.1007/s10207-014-0248-7
https://doi.org/10.1007/s10207-014-0248-7
https://doi.org/10.1109/CVPRW.2014.131
https://doi.org/10.1109/CVPRW.2014.131
https://doi.org/10.1109/TPAMI.2015.2500224
https://doi.org/10.1109/TPAMI.2015.2500224
https://doi.org/10.1613/jair.5756
https://doi.org/10.1613/jair.5756
http://arxiv.org/abs/1411.1792.pdf
http://arxiv.org/abs/1802.10135.pdf
http://arxiv.org/abs/1802.10135.pdf
https://doi.org/10.4018/978-1-7998-1558-7.ch004
https://doi.org/10.4018/978-1-7998-1558-7.ch004

	Study of a Hybrid Approach Towards Malware Detection in Executable Files
	Abstract
	Introduction
	Related Work
	Methodology
	Data Preprocessing
	Feature Extraction
	Opcode Frequency Feature Space
	CNN Extracted Features

	Classification Models

	Experiments and Results
	Conclusion and Future Work
	References

