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Abstract
With the ever-increasing number of Internet users in this digital age, exposure to malicious attacks is increasing. Every day, 
large volumes of malicious content are generated to exploit 0-day vulnerabilities. There is every possibility of downloading 
malicious files unintentionally, which could corrupt the system and user data. With the advancements in technology and 
growing dependence on digital data, malicious software detection has become a crucial task. The existing approaches need 
modifications to support and detect the latest attacks. Recently, artificial intelligence-based malicious file detection meth-
ods have been proposed. In the past, most of the works analyzed the executable file features and visual features from their 
corresponding images independently. Additionally, image-based analysis has been exploited for categorical classification, 
i.e., finding the family once it is known to be malware. We propose a CNN-based model that extracts visual features from 
malware images, which outperforms existing approaches on a benchmark dataset like MalImg. We study the effect of using 
a hybrid feature set containing these visual features integrated with statically obtained opcode frequencies for the detection 
of malware. Our experiments on standard datasets demonstrate that there is no significant performance improvement using 
this hybrid approach.
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Introduction

Malware are the computer programs with malicious charac-
teristics intending to harm the operating system, steal per-
sonal information, and damage the user network. Detection 
and mitigation of malware are an evolving problem in the 
field of cyber security. Traditional as well as commercial 
antivirus softwares (AV) available in the market usually 
rely on a signature-matching method, where a local signa-
ture is required to be stored in the database for matching 
patterns from well-known malware. A signature is a short 
sequence of bytes (hash) that can be used to identify mal-
ware uniquely with small error rates. However, techniques 

like code obfuscation, encryption, and morphing can sig-
nificantly change the malware signature. Due to this, the 
signature-matching method cannot provide security against 
0-day attacks as malware generation tool kits like Zeus1 can 
generate many variants of the same malware using obfusca-
tion techniques [1].

Malware detection can mainly be performed in two ways 
using static analysis or dynamic analysis. Certain features 
are extracted from the portable executable (PE) files without 
actually executing the code in static analysis. Static analysis 
is safe to adopt as it does not harm the user’s system. It is 
less resilient towards the encrypted and compressed malware 
executables. In dynamic analysis, features are derived while 
running the executable in a controlled environment called 
sandbox. Dynamic analysis is more suited for real-time 
detection and reveals the true nature of the code. However, 
the execution path taken is the same in every run and the 
analysis time is increased [2]. Researchers and anti-malware 
communities have reported that using machine learning, and 
deep learning-based methods, malware detection systems 
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are more robust to code modifications. An essential compo-
nent of machine learning-based malware detection is feature 
extraction from PE headers, and subsequent dimensionality 
reduction of the obtained feature space, which is a chal-
lenging problem in both practical and theoretical machine 
learning [3].

The proposed method is based on constructing a hybrid 
feature space using enhanced feature extraction to detect 
malicious executable files on Windows. The first set of 
features are based on the opcode frequency, obtained from 
static analysis of PE files after disassembling the executable 
files. The second set is obtained from grayscale images by 
converting the binary files using visual analysis and Convo-
lution Neural Network (CNN) along with a transfer learning-
based approach. The CNN model will be first trained for 
detection of malware on the MalImg dataset [4] to learn the 
structural features of malware based on its local image pat-
terns. It performs better than most pre-trained deep learning 
models, which have been experimented in the past on the 
MalImg dataset. CNN-based feature representation trans-
fer is then utilized to extract 128 features from the primary 
dataset. This extended feature set yields similar performance 
using only the opcode frequency features.

The main contributions of the paper are:
(i) A generic CNN architecture is proposed for image-

based malware detection, which outperforms with the previ-
ous studied pre-trained models.

(ii) A hybrid feature space containing opcode frequency 
from static PE files and visual descriptors from the corre-
sponding grayscale images for the detection of malware is 
explored and validated.

The rest of the paper is organized as follows. The second 
section discusses about the “Related work” followed by third 
section that represents the “Methodology”. The forth sec-
tion gives the “Experimental results” and “Conclusions and 
future work” are drawn in last section.

Related Work

Several security researchers have applied domain-level 
knowledge on PE files for static malware detection. Here, the 
crucial step is the feature selection, which is mostly hand-
picked. Schultz et al. [5] introduced static feature analysis 
using a data mining method to detect malware with three dif-
ferent types of static features, i.e., PE head, string sequence, 
and byte sequence. Shabtai et al. [6] provided a taxonomy 
for malware detection using machine learning algorithms 
by reporting feature types, feature selection techniques, and 
ensemble algorithms. Firdausi et al. [7] proposed an auto-
matic behavior-based malware detection approach using 
Anubis, a free online dynamic analysis service to monitor 

the collected samples. They used Naive Bayes, decision 
trees, and k-nearest neighbors for classification.

Ahmadi et al. [8] proposed a novel paradigm to group 
malware variants into different families. The authors gave 
importance to feature extraction and selection methods. 
The features were extracted from content and the sample 
structure, so the proposed method will work on packed and 
obfuscated samples. The features were grouped based on 
malware behavior characteristics, and fusion is performed 
according to a per-class weighting paradigm. Rathore et al. 
[1] found opcode frequency to be a discriminatory feature 
of PE files; they used Random Forest as a baseline and 
other deep learning models for the comparison. Igor San-
tos et al. [9] proposed a hybrid malware detection system 
that detects malware by combining features extracted from 
opcode frequency and executing the dynamic features that 
resulted in better performance compared with each alone.

Another interesting approach involves viewing this task 
as an image recognition one by converting the binaries to 
grayscale images and employing several vision-based tech-
niques. One of the first works that visualized malware clas-
sification through image processing was by Nataraj et al. 
[4], where high-level gist descriptors were used and the 
classification was done by kNNs. Sravani et al. [10] used 
a Deep Learning (DL) approach that obtained slightly bet-
ter results without using gist descriptors. They compared 
feature-based classical methods like kNN with DL ones to 
demonstrate the superior performance [11]. Transfer learn-
ing technique was introduced using pre-trained ResNet, 
VGGNet, and Inception models for malware classifica-
tion. This is because images tend to smooth out minor 
within-family differences, while significant (inter-family) 
differences were clearly observed [3, 11]. A generic CNN 
architecture for malware classification was proposed [12, 
13] and experimented on popular benchmark datasets to 
obtain good accuracy. These works mainly aim at family 
classification rather than detection.

The opcode sequences from PE files obtained dynami-
cally were widely studied. The major issue with this 
method was the high execution time. An RNN-based 
approach using API calls as features during run-time [14]. 
An LSTM-based approach was presented in [15], where 
first an opcode vocabulary is built using opcode sequences 
from the assembly code. This was then used to generate 
CBOW embeddings [16], which were sent through a two-
stage LSTM model. Jipei et al. [17] proposed MalNet, 
a stacked ensemble of CNN (image-based) and LSTM 
(opcode sequence based) that demonstrated enhanced 
performance in both malware detection and classification. 
They reduced the prediction time by adopting several par-
allelization techniques. Some concerns with these tech-
niques include accounting for huge opcode sequences of 
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variable length generated, resulting in loss of information 
and the subsequent delay in procuring them and training.

Extending these works, we have made a first of its kind 
attempt to detect malware by integrating features from PE 
files as well as the binary images.

Methodology

The malware analysis and detection is formulated as a binary 
classification task where malware and benign are two dif-
ferent classes. In this work, Malware Detection PE-Based 
dataset [18] is used as the primary dataset for the study. 
It contains 8970 malware and 1000 benign binary files. 
Malware files are divided into five types: Locker (300), 
Mediyes (1450), Winwebsec (4400), Zbot (2100), and 

Zeroaccess (690). All the malware files have been collected 
from VirusShare2 and Malicia Project [19]. Benign execut-
able files are taken from installed folders of applications of 
legitimate software from different categories. All files have 
been verified using VirusTotal 5,3 an anti-virus aggregator. 
Additionally, the MalImg dataset has been used for image-
based visual analysis and to train CNN model, and then used 
as a feature extractor on the primary dataset. We considered 
total of 9339 grayscale images from 25 malware families.

The classification pipeline is a multi-step process, as 
shown in Fig. 1. The overview of the algorithm for the pro-
posed pipeline is explained in Algorithm 1 and in detail in 
the following sections.

Fig. 1  Classification pipeline

2 https:// virus share. com/.
3 https:// www. virus total. com/.

https://virusshare.com/
https://www.virustotal.com/
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Feature Extraction

Opcode Frequency Feature Space

The opcode feature vector space is generated from the disas-
sembled files using static analysis of executable files. Simi-
lar to the approach adopted in [1], an exhaustive opcode 
list containing 1808 opcodes is prepared. Then, the assem-
bly files are scanned to obtain the frequencies of opcodes 
occurring in all the files. Some opcodes did not appear in 
any file or are very similar and hence grouped or removed 
accordingly. Finally, a 1431-dimensional feature space is 
constructed for the analysis. To overcome class imbalance 
issue, the variance threshold method is considered and fixed 
the threshold at 0.01. If the variance of any opcode occur-
rence is lower than the threshold, then it is considered to be 
approximately constant and would not improve the perfor-
mance of the model significantly and hence dropped.

CNN Extracted Features

Literature shows that the deep pre-trained networks such as 
ResNet and VGGNet yielded poorer accuracy compared to 
classical ML models like kNNs and generic CNN architec-
tures, so a custom CNN architecture as shown in Fig. 2 is 
considered for our approach.

It has 4 convolution layers, followed by a pooling layer, 
respectively, and 2 fully connected dense layers. Using pool-
ing layers, the model is robust to the small changes in the 
images too. This model is trained on the MalImg dataset for 
10 epochs using a 70-10-20 train-validation-test split, using 
dropout and early stopping to prevent over-fitting. Due to 4 https:// www. gnu. org/ softw are/ binut ils/.

Data Preprocessing

The first step involves disassembling the executable 
files (.exe) to assembly code (.asm). This is performed 
using the object dump utility, which is a part of the GNU 
Binutils package.4 For the conversion of binary file to 
an image, the bytes representing the files are scanned 
sequentially, and their corresponding unsigned integer is 
treated as bytes of a grayscale image. Images are cre-
ated having a predefined width of 256 pixels and vari-
able height, depending on the size of the file—similar 
to the approach adopted in [11]. After carrying out the 
above steps and removing corrupt and encrypted files, the 
final dataset under study contains 8938 malicious and 967 
benign files. Since the MalImg dataset directly provides 
images, no preprocessing steps are required. All images 
are finally re-scaled to 256 × 256 size before feeding to 
the CNN model.

https://www.gnu.org/software/binutils/


SN Computer Science           (2021) 2:275  Page 5 of 7   275 

SN Computer Science

class imbalance, data augmentations are tried, but led to a 
decrease in accuracy. This is because most of the programs 
are executed in top-to-bottom order without many jumps, 
and horizontal and vertical flipping would result in flipping 
the order—thus changing the program itself. This trained 
model is then used on the actual dataset to extract the second 
last layer’s features, i.e., FC_2.

Studies show that generic descriptors extracted from the 
layers of convolutional neural networks are very powerful 
[20–23]. Also, the high-level layer features are more specific 
and discriminant, particularly for target tasks close to the 
source task.

Compared with lower level layers, high-level layers pro-
vide better results when used out-of-the-box to feed classi-
fiers for similar tasks. These findings are statistically quanti-
fied using the Kolmogorov–Smirnov statistic (DKS), which 
measures the distance between two empirical distribution 
functions (EDF) P and Q [22]. In our study, the source task 
on MalImg and destination task on the primary dataset is 
the same, and hence, the features of the second last layer of 
the CNN model, which is 128-dimensional, are extracted 
from the primary dataset. This would encode a large amount 
of visual knowledge from the images, specific to malware 
detection. Finally, the 1559 (1431 + 128)-dimensional com-
bined feature set is obtained by concatenating the above 2 
prepared sets. The 9905 × 1559 dataset is then sent to the 
classification models.

Classification Models

We used Random Forest (RF) and XGBoost (XGB) for clas-
sification. Random Forest is a collection of tree predictors, 
such that each tree depends on the values of a random vector 
sampled independently and with the same distribution for all 
trees in the forest. It consists of a large number of individual 
decision trees that operate as an ensemble. Many relatively 
uncorrelated trees individually vote, and the final prediction 
is based on the majority. This ensures that prediction errors 
are minimized.

XGBoost has been widely used in many fields to achieve 
state-of-the-art results. It is an efficient implementation of 
the Gradient Boosting Machine. The main idea of boosting 
is to combine a series of weak classifiers with low accuracy, 
sequentially, to build a robust classifier with better classifica-
tion performance. In gradient boosting, errors are minimized 
by a gradient descent algorithm. By blending software and 
hardware capabilities, it provides enhanced accuracy in a 
short amount of time.

Fig. 2  Proposed CNN archi-
tecture: input dimension is 256 
× 256 × 1. 4 Conv+Maxpool 
operations using 8, 16, 32, 64 
conv filters, respectively. Finally 
flattened to get 512 and 128 
dimensions in FC_1 and FC_2

Fig. 3  Model training accuracy

Table 1  Performance comparison on MalImg

Model Work Accuracy (%)

ResNet34 [11] 98.39
Generic CNN Ours 99.6
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Experiments and Results

First, we evaluate the performance of our generic CNN 
model with some of the previous works for malware 
detection on MalImg dataset in Table 1. Figure 3 shows 
the model’s training phase accuracy. As early stop-
ping mechanism is used, the training converges after 
8 epochs.

Results indicate that our generic CNN outperforms 
the very deep pre-trained networks like ResNet. Further-
more, when this model was used on the primary dataset for 
direct prediction using a pure transfer learning approach, 
it yielded an accuracy of 99.3%, thus representing its 
generalizability.

Next, we carried out 3 different experiments to under-
stand the relative performance and improvements by adopt-
ing combinations of the prepared feature sets. 

1. Using the opcode frequency feature set: this considers 
only the statically obtained variance threshold opcode 
features, which is in line with the approach described in 
[1].

2. Using the CNN extracted features: a total of 128 features 
were extracted from the primary dataset’s images using 
our trained CNN model and are passed to the classifica-
tion models.

3. Combination of both feature sets: in this, both feature 
sets are concatenated and sent to the classification mod-
els.

Table 2 summarizes the results of these experiments. 
As observed from the results, the hybrid feature set (which 
encodes a large amount of static and visual knowledge from 
executables and their images) exhibits similar performance 
as of the opcode frequency feature.

We further evaluated our trained model on a test set by 
considering the sample of another benchmark dataset Big 
2015 [24], which has more recent malware families which 
were not included in our primary dataset. We obtained an 
accuracy of 96%, again verifying with the obtained obser-
vation. From these results, we can say that visual features 

do not seem to add significant influence towards the detec-
tion of malware samples. When both the features are used 
together, the result was not improved, but when considered 
the images, then there is a large enhance in accuracy.

Conclusion and Future Work

The alarming growth of malware attacks in recent years is a 
major concern as it poses a serious security threat to com-
puter systems and data. Devising robust malware detection 
techniques is the need of our current society to overcome 
the threats. Classical signature-matching mechanisms used 
by most AVs tend to become unreliable when they find new 
malware. Towards this endeavor, we utilized a hybrid fea-
ture set obtained from the discriminatory feature of PE files, 
opcode frequency, and high-level image descriptors from a 
trained CNN model for the detection of malicious code in 
the Windows executable files. However, we did not observe 
any significant improvement over the opcode frequency fea-
ture set, probably due to an increase in dimensionality, but 
we observed a drastic change in accuracy when the images 
were used for the detection of malware. In future, we will 
study the effect of integrating other features such as opcode 
sequence calls information in more effective manner. We 
also extend this approach to classify malware into their cor-
responding families once detected, and further processes for 
better accuracy. Our study can guide future researchers who 
plan to use different data sources for malware analysis [25].
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