
Diagnostic Code Group Prediction by
Integrating Structured & Unstructured Clinical

Data

Akshara P?1, Shidharth S∗1, Gokul S Krishnan??1,2, and Sowmya Kamath S1

1 Healthcare Analytics & Language Engineering (HALE) Lab,
Department of Information Technology,

National Institute of Technology Karnataka, Surathkal 575025, India
2 Robert Bosch Centre for Data Science and Artificial Intelligence,

Indian Institute of Technology, Madras
akshblr555@gmail.com, s.shidharth@hotmail.com, gsk1692@gmail.com,

sowmyakamath@nitk.edu.in

Abstract. Diagnostic coding is a process by which written, verbal and
other patient-case related documentation are used for enabling disease
prediction, accurate documentation, and insurance settlements. It is a
prevalently manual process even in countries that have successfully adopted
Electronic Health Record (EHR) systems. The problem is exacerbated in
developing countries where widespread adoption of EHR systems is still
not at par with Western counterparts. EHRs contain a wealth of patient
information embedded in numerical, text, and image formats. A disease
prediction model that exploits all this information, enabling accurate
and faster diagnosis would be quite beneficial. We address this challeng-
ing task by proposing mixed ensemble models consisting of boosting and
deep learning architectures for the task of diagnostic code group predic-
tion. The models are trained on a dataset created by integrating features
from structured (lab test reports) as well as unstructured (clinical text)
data. We analyze the proposed model’s performance on MIMIC-III, an
open dataset of clinical data using standard multi-label metrics. Empiri-
cal evaluations underscored the significant performance of our approach
for this task, compared to state-of-the-art works which rely on a single
data source. Our novelty lies in effectively integrating relevant informa-
tion from both data sources thereby ensuring larger ICD-9 code coverage,
handling the inherent class imbalance, and adopting a novel approach to
form the ensemble models.

Keywords: Clinical Decision Support Systems · Healthcare informatics
· Disease prediction.
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1 Introduction

Electronic Health Records (EHR) represent a consolidated digital portfolio of a
patient’s medical history, which doctors can access at any time and share with
other healthcare professionals. It encompasses vital information such as past
medications, immunizations administered, progress notes, laboratory data, and
clinical notes. The use of EHR systems has increased dramatically in hospitals
due to their operational efficiency and use in secondary healthcare analytics like
disease diagnosis, ICU mortality prediction, and clinical decision making. Clini-
cal Decision Support System (CDSS) technology acts as a backbone and builds
upon the foundations of EHR, and supports health-related decision making by
aiding clinicians to incorporate its useful suggestions along with their knowledge.

ICD-9 (International Classification of Diseases, 9th edition) is a hierarchi-
cal taxonomy maintained by the World Health Organization (WHO) that as-
signs unique diagnostic codes for various medical conditions of patients. In-
surance companies rely hugely on EHRs and use ICD classification to settle
dues and reimbursements during patient discharge. Currently, medical coders
assign appropriate ICD-9 codes after reviewing a patient’s record using their do-
main knowledge in the medical field. However, the overwhelming rate of patient
data generation makes manual coding a very cumbersome, error-prone (over-
coding/under-coding), and expensive task [1, 2]. As predicting unique ICD-9
codes has been found to be poor performing [3], researchers made attempts to
capture the categories of diseases as a step prior to coding and therefore ICD-9
group prediction was adopted [4–6]. Hence, we focus on this problem and group
codes into higher-order categories to reduce the feature set.

Important patient-related data can be found in lab test reports, which are
structured in nature, and clinical notes written during their admission tenure,
which are in the form of unstructured text. Utilizing only one of these would
result in some observations or indicative symptoms being omitted, thus causing
incorrect diagnostic coding. These aspects make automatic coding a challenging
task indeed and there is a necessity for developing effective disease coding or
grouping models based on integrated structured and unstructured clinical data
sources. The major contributions of this paper are:
1. We present mixed ensemble models for ICD-9 code group prediction, which

integrate relevant properties of both structured lab events and unstructured
text data.

2. A novel ensembling mechanism based on correlation is proposed to effectively
combine various individual models.

3. We perform extensive analysis on the predictions of ICD-9 code groups on
the MIMIC-III dataset using standard multi-label metrics like AUROC and
Hamming Loss, which can be used as a baseline for further research.

2 Related Work

Computerized ICD-9 coding, a task that has been actively explored over the
past decade, has seen a significant volume of research. Previous works aiming to
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predict ICD-9 codes have either used only the structured clinical lab test data
[5, 7], or only the clinical notes texts, specifically from the discharge summary
category [1, 2, 8, 9, 3]. Larkey & Croft [10] assigned ICD-9 codes using discharge
summaries by combining kNNs, relevance feedback, and Bayesian classifiers. A
single code characterized each patient visit, but in reality, there could be many.
Several works proposed RNN based models and considered this as a multi-label
classification task. Lipton et al. [7] utilized LSTMs with target replication and
dropout to predict 128 diagnoses from irregularly sampled structured EHR data.
In [1], a simple LSTM model was fed with Glove word embeddings of the dis-
charge summary notes to predict codes.

Prakash et al. [11] utilized a condensed version of memory networks [12] with
effective use of several memory hops, instead of LSTMs, and Wikipedia as the
knowledge source. This, however, increases the number of model parameters and
training time. Due to several unique ICD-9 codes which are very granular, most
studies have reduced this task; by focusing on a small subset of codes, e.g., con-
sidering top-10/top-50 codes and categories [2] or the most commonly occurring
50/100 labels [11], or on a specific outcome such as mortality rate. Purushotham
et al. [5] benchmarked ICD-9 group prediction on extensive healthcare data using
a Super Learner model. This used only the structured patient data from clinical
lab tests and predicted the ICD code group(s) for a patient, ignoring the large
volume of data that could be obtained from the easily available clinical notes in
text format. TAGS [6] utilized nursing notes and adopted vector space and topic
modeling approaches to capture text semantics aiding in diagnosis. An initial
attempt to predict ICD-9 codes based on structured and unstructured data was
presented in [13].

We build upon this and integrate structured and unstructured data consid-
ering a more diverse cohort, and apply various types of learning algorithms to
effectively extract and integrate features from these diverse sources and use a
novel correlation-driven approach to form ensemble models which produce better
results overall.

3 Materials & Methods

We investigate the use of various predictive models for ICD-9 coding integrating
both structured and text data. Fig. 1 illustrates the processes of our proposed
methodology. We separately pre-process structured and text data tables and
then join the two, based on hospital admission (hadm id) as key.

3.1 Data Preparation & Preprocessing

MIMIC-III [14] is a database containing clinical data relating to 61,532 critical
care patients who were admitted to Beth Israel Deaconess Medical Center, New
York, USA. For structured data analysis, we used the contents of the admissions,
patients, labevents, and diagnosis icd tables which provided us with statistical
details regarding the ICU stay and tests undertaken. For unstructured data
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Fig. 1: Proposed Methodology

analysis, we used the discharge summary and radiology notes columns of the
noteevents table.

The admissions table contains information about patients’ admission such
as admission/discharge times and patient demographics. Every hospital visit is
assigned a unique hadm id. The patients table provides the details about a spe-
cific patient represented by a subject id. Laboratory based test observations are
found in the labevents table, which has the clinical test values for about 480
tests. diagnosis icd gives the mapping between every admission and correspond-
ing manually assigned medical ICD-9 codes. The clinical notes associated with
every admission can be found in the noteevents table which contains several cat-
egories of notes such as radiology, discharge summary, physiology, and nursing.

Structured Data Preprocessing The admissions and patients tables were
joined on the subject id key and the resulting table was joined with the labevents
table on hadm id key. Patient age was calculated as the difference between ad-
mit time from the admissions table and DOB value from the patients table.
In the dataset, the date of birth of patients above 89 years were adjusted to
recondite their true age, so the ages were scaled appropriately. The age and
gender distribution of the patients considered is shown in Fig 2. The ICD-9
disease codes present in the diagnosis icd table were aggregated into 20 ICD-
9 disease groups, similar to existing literature [5, 6]. Therefore, 20 code groups
were reviewed with binary values: 0, indicating absence and 1, for presence of
the ailment. The groups considered are shown in Table 1.

For every hadm id, the presence/absence of the 20 disease groups was deter-
mined, which was the training target. In some cases, the same clinical tests have
been taken multiple times during the admission tenure. In such a scenario, the
test values were sorted according to chart time in ascending order, and the val-
ues corresponding to the earliest test were considered as it reflects the patients’
initial condition during admission time. These 480 different clinical tests, which
are continuous variables from the labevents table were added to the prepared
cohort with values for the tests undertaken by the patients, and others as 0.
We drop records for which hadm id is missing (indicates that the patient was
out-patient i.e. not admitted or possible data error), and each clinical admission
is treated as a unique case.
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(a) Age Distribution (b) Gender Distribution

Fig. 2: Patient metadata statistics after Structured Data Preprocessing. The
bump seen at 0 in (a) is due to the inclusion of newborns/neonates too in our
study. In (b) classes 0 and 1 represent female and male patients respectively

Table 1: ICD-9 Code Groups - Label Statistics w.r.t Study data
Group Range Occurrence Brief Description

1 001 - 139 102 Infectious and parasitic Diseases
2 140 - 239 502 Neoplasms
3 240 - 279 251 Endocrine, nutritional, metabolic, immunity disorders
4 280 - 289 108 Blood and blood-forming organs’ diseases
5 290 - 319 257 Mental disorders
6 320 - 389 565 Diseases of the Nervous system and sense organs
7 390 - 459 452 Diseases of the Circulatory system
8 460 - 519 206 Diseases of the Respiratory system
9 520 - 579 406 Diseases of the Digestive system
10 580 - 629 260 Diseases of the Genitourinary system
11 630 - 677 203 Related to pregnancy, childbirth & Puerperium
12 680 - 709 159 Diseases of skin and subcutaneous tissue
13 710 - 739 374 Musculoskeletal System and Connective Tissue
14 740 - 759 262 Congenital Anomalies
15 760 - 779 206 Conditions originating in Perinatal period
16 780 - 796 264 Symptoms & Non-specific abnormal findings
17 797 - 799 18 Ill-defined/unknown causes of morbidity & mortality
18 800 - 999 1396 Injury and Poisoning
19 E Codes 502 External causes of injury
20 V Codes 491 Supplementary, factors influencing health status

Unstructured Data Preprocessing We performed standard preprocessing on
the error-free notes (having 0 in the iserror column) to clean the text corpus: to-
kenization, removal of stopwords, stemming, and lemmatization. The processed
free-text notes were then concatenated by grouping based on hadm id, to get a
condensed note for each admission.
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Finally, both the processed data sources (structured and unstructured) are inte-
grated using the hadm id as key, giving us the final desired dataset with 58976
rows x 504 columns [4 (admission days, gender, age, aggregated clinical note) +
480 lab tests + 20 ICD groups].

3.2 Feature Engineering

We employed both boosting models and deep neural models to generate features
for the structured and unstructured clinical data. The word embeddings were
generated using Word2Vec [15] and we used the CBOW architecture, in line with
Huang et al’s [2] observations. These word embeddings were averaged for every
hadm id giving equal importance to each word of the text related to a particular
hadm id. For feature extraction in deep neural models, the Keras embedding
layer was used. This layer takes one-hot encoded data as input and generates
embeddings, guided by the loss function during training of the model, which
are more suited towards the specific task being trained, rather than just based
on contextual similarity/word occurrences as in pre-trained embedding models.
Following tokenization, the input sequence was padded, keeping max length as
the average length of all sequences.

3.3 Disease Group Prediction Models

As a patient can suffer from multiple diseases, we model our task as a binary
classification of multiple labels. The models have not been fine-tuned as our
emphasis was on exploring different architectures.

Boosting Models. Boosting is a standard ensemble method where weak learn-
ers are trained sequentially, each attempting to fit on its predecessors’ residual
error. CatBoost [16] performs well on textual, image data and is based on the
gradient boosting machine learning algorithm. The structured data was passed
through a pipeline consisting of OneVsRestClassifier and LGBM Classifier [17]
to get the predicted probabilities for each ICD code group. In the case of un-
structured clinical data, the word embeddings generated were sent to a similar
pipeline as above, consisting of OneVsRestClassifier and CatBoost[16] /LGBM
Classifier. Our dataset is highly imbalanced, with over 90% of the label entries
being 0, indicate the absence of disease. We used class weights to overcome spar-
sity issue. Let a, b be class labels (here 0 and 1) and Pa, Pb their occurrence,
then the weights used are:

class weighta = Pb/(Pb + Pa)

class weightb = Pa/(Pb + Pa)

respectively.
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Deep Neural Models. We also experimented with three different deep neural
architectures – Encoder model, convolutional neural model and capsule net-
works. The details of the experiments are discussed in detail below.

a. Encoder Architecture: After the embedding layer, the vectors are passed to
an encoder to utilize multi-headed self-attention [18] which jointly attends to
information from different sub-spaces. Since common medical terms are coded
similarly, they are given more importance due to attention. Positional encoding
was not used as we are more concerned with medical terms indicating a particular
disease’s presence instead of sentence structure. The batch normalization layers

Fig. 3: Architecture 1: Encoder Model

were replaced with squash functions, and the number of units in the feed-forward
layer was reduced. The encoder’s output, taken from the hidden layer, was fed
into a Conv layer with 128 filters and a kernel size of 2. This output is separately
passed through MaxPool and AvgPool layers, which are later concatenated to
combine all the words’ average weights and the most weighted word in every
sliding window. After concatenation, the output is squashed and passed to a
feed-forward layer with 32 units followed by the output layer, which contains
the number of units equal to the number of classes and uses a sigmoid activation
function instead of a softmax function, as the aim is to find probabilities of each
class occurrence rather than the most confident one. The motivation behind this
was to leverage the word encodings generated by a transformer based encoder. By
concatenating outputs from different pooling functions we try get more features
from existing features. We found the squash activation function [19] to work
better than ReLU.

b. Convolutional Neural Network (CNN): After passing through the embedding
layer, the input is squashed by the squashing function, [19] which is an activation
function used to keep the variance in the range (0,1) (Eq. 1). We used it here
instead of other well-known activation functions, as applying it on the output
reduces the variance, where sj and vj are the input and output vectors of capsule
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j. vj is passed to a Conv layer with 64 filters and kernel size of 2. Next, the output
is squashed and passed through grouped convolutions [20], and an attention layer
that uses a weighted average to calculate the importance of every word of the
given input as shown in Eq. 2

vj =
||sj ||2

1 + ||sj ||2
sj
||sj ||

(1)

et = htwa; at =
exp(et)∑T
i=1 exp(ei)

; v =

T∑
i=1

aihi (2)

where ht is the hidden state representation at time t, and wa is the attention
weighted matrix. The intuition behind using grouped convolutions is to learn
better representations of the data and parallelize learning. With this, we are not
restricting the width of our model, and computation to get the output feature
maps is reduced as each filter convolves only on some of the feature maps ob-
tained from kernel filters in its filter group. The model consists of 3 Conv layers
in parallel, consisting of 32 filters and a kernel size of 2 each. These layers are
concatenated, replicated three times; then their outputs are concatenated and
squashed. The output of this is passed through a MaxPool, AvgPool, and Atten-
tion layer. The outputs from these layers are concatenated along with the output
from the previous Attention layer. The resulting output is then squashed and
passed through a dense layer containing a number of classes as a number of units
and passed through a sigmoid activation function to give each class’s prediction
weights. Since our data is highly imbalanced, conventional deep networks tend
to overfit easily by generalizing all the predicted labels as the majority class.

c. Capsule Network: When CNNs and pooling layers such as max-pooling and
average-pooling are used for text classification tasks, many useful features are
lost as max-pooling only retains the feature with the highest activation, and
average pooling represents the input vector at each position equally. However, in
Capsule Networks, [19] dynamic routing chooses to preserve not only one but all
features that are useful, as long as they are “agreed” among layers. This was the
key factor for using a capsule network based model, as medical notes often have
multiple medical terms signifying the presence or absence of certain diseases.
As these medical terms are common they are given more weightage during the
routing compared to other text.

The architecture used, depicted in Fig. 5, begins with a convolution layer that
extracts n-gram features at various sentence locations using different filters. Next
is the primary capsule layer. We used softmax in our routing algorithm as we
have a multi-label classification task on our hands. Capsule Layer takes in output
from Keras embedding layer, which transforms each word in our corpus to a 20-
dimensional (20 - number of class labels) vector. A convolutional layer follows this
with kernel size (9,1) and stride length of 1. Every layer so forth is a capsule layer
consisting of 10 capsules, each instantiated with 16-dimensional parameters, and
the length indicates the probability of the capsules’ existence. These layers are
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Fig. 4: Architecture 2: CNN based Deep Neural Model, bracket and number
denote number of parallel blocks concatenated.

connected via transformation matrices, with every connection multiplied by a
routing coefficient, which is computed dynamically by the routing mechanism.
In our architecture, we use consecutive capsule layers after the embedding layer.
We use an AttentionWeightedAverage layer which is an attention layer that uses
a weighted average to calculate the importance of every word, shown in Eq.
2. The capsule layers’ output is passed to both AttentionWeightedAverage and
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Flatten layers simultaneously. The outputs of these layers are concatenated and
then passed to a final feed-forward layer with sigmoid activation from which we
obtain the final predictions.

Fig. 5: Architecture 3: Capsule Network

3.4 Model Ensembling

Model ensembling is a technique to boost the accuracy of learning algorithms.
Our first ensemble, Ensemble A was obtained using weighted voting, using the
LGBM Classifier on structured data and the CatBoost Classifier on text. In
weighted voting, classifiers are instead assigned weights based on their perfor-
mance to reduce the impact of poor-performing ones. Apart from this, we have
used a novel correlation-driven approach. If members in an ensemble individu-
ally perform well and are diverse in their predictions, their combinations would
mostly lower prediction errors [21]. The pairwise diversity between the predic-
tion probabilities Y r and Y s of 2 well-performing models was calculated using
their Pearson correlation coefficient shown in Eq. 3,

r =

∑
(Y r

i − Ȳ r)(Y s
i − Ȳ s)√∑

(Y r
i − Ȳ r)2

∑
(Y s

i − Ȳ s)2
(3)

Correlation was calculated row-wise between the models pair-wise, and every
time the coefficient was less than the threshold, a variable count was incre-
mented. The pairs of models with higher count were ensembled together (as it
indicated diverse, though accurate predictions) by weighting their probabilities.
The weights used were the log-reduced values of the calculated count. The final
model, Ensemble B was built using - LGBM Classifier on structured data, CNN,
Encoder and Capsule Network.

4 Results & Analysis

4.1 Baseline Models & Experimental Setup

To the best of our knowledge, no prior work has considered an integrated ap-
proach similar to ours, so a direct comparison is not plausible. However, we
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compare with some existing benchmark works, Super Learner & MMDL [5] and
TAGS [6], which use a single data source. There are significant differences in our
data modeling, as well as the final cohort used for prediction:
1. We take every admission (including re-admissions) as an independent instance

without any data leak, rather than taking just the first admission of a patient.
This results in a larger number of entries (58,976), which indirectly helps to
simulate more patients having different target labels each time.

2. Integrating structured and text data ensures better ICD-9 code coverage. Un-
like some other works that consider only adults (> 15 years), all patients are
taken, so our model is capable of predicting neonatal and congenital diseases
as well.

We used Sklearn, Pandas, Gensim, and Keras and experimented on NVIDIA M40
processor for the experiments. The optimizer used was Adam and the loss func-
tion was binary crossentropy. Models were trained for 1000 epochs, the learning
rate was set as 0.1, embedding size as 1000, minimum word frequency as 3, and
window size as 10 for Word2Vec. For our Pearson correlation approach, we set
the threshold to 0.7. All hyper-parameters were empirically determined. We use
standard scoring metrics: AUROC Score, a label-based metric, is a plot showing
the trade-off between true positive and false-positive rates for various thresholds
and tells how well the model distinguishes among the classes. Hamming loss,
an example-based metric that represents the fraction of misclassified labels, is
considered a better metric for multi-label prediction tasks [22, 23].

4.2 Results

Table 2 shows the individual models’ performance on structured and unstruc-
tured data independently and results of ensembling these, selected as described
in Section 3.4 along with existing baseline models. Ensemble A has a lower ham-
ming loss as it consists of a combination of boosting models, where we could
prevent the class imbalance by assigning class weights (refer Section 3), and
hence the results are more accurate patient-wise. Ensemble B consists of a com-
bination of boosting models as well as various deep learning based models, where
the latter was used to capture features from the text. However, as deep learn-
ing models fall prey to class imbalance, we get a higher AUROC score, but the
hamming loss increases compared to Ensemble A. Additionally, even though we
consider a larger number of hospital admissions and more patient types, our
results are comparable to existing works, whose cohort is less diverse.

4.3 Discussions

Achieving good results with regards to both Hamming loss and AUROC scores
is essential, as in multi-label classification, no misclassification is a hard wrong or
right prediction. Having a low hamming loss ensures a more accurate prediction
of labels overall as it indicates a row-wise error (at patient-level), and optimizing
this metric implies more patients are correctly diagnosed. In AUROC, the av-
erage of all labels’ AUROC scores is taken, which may be biased. For instance,
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Table 2: Comparison of Proposed Models with Existing Works. *Explained in
Sec 3.4. (-) denotes unreported value
Sl. no. Model Hamming Loss AUROC

Baselines

1 FFN (Structured only, on 38425 entries) [5] - 0.717
2 RNN (Structured only, on 38425 entries) [5] - 0.724
3 Super Learner (Structured only, on 38425 entries) [5] - 0.758
4 MMDL (Structured only, on 38425 entries) [5] - 0.777
5 TAGS (Unstructured only, on 6532 entries) [6] - 0.787

I. Performance on structured data

1 OneVsRestClassifier + CatBoostClassifier 0.193 0.686
2 OneVsRestClassifier + XGBClassifier 0.173 0.647
3 OneVsRestClassifier + LGBMClassifier 0.169 0.672

II. Performance on unstructured data

1 Word2Vec + LGBMClassifier 0.182 0.664
2 Word2Vec + CatBoostClassifier 0.181 0.667
3 Word2Vec + XGBClassifier 0.182 0.656
4 Architecture 1: Encoder 0.172 0.670
5 Architecture 2: CNN 0.187 0.651
6 Architecture 3: Capsule Network 0.176 0.659

III. Performance of Ensembles on both structured & unstructured data

1 Ensemble A* (on 58976 entries) 0.154 0.748
2 Ensemble B* (on 58976 entries) 0.172 0.768

some labels may exist for which the model yields very accurate results, while
for some, the results may be abysmal. So being able to separate the various la-
bels (ICD-9 code groups) and predicting the codes correctly for every admission
is vital, which is why we have tried to optimize both the metrics. Most previ-
ous works [8, 5, 24, 6] have not assessed their models based on hamming loss but
have achieved good results for AUROC. Our ensemble models are able to achieve
comparable AUROC scores and good hamming loss scores too.

A major problem we face is dealing with the huge class imbalance in the
multilabel classification task. A patient rarely has more than 3 diseases at a
time, and the class imbalance is more apparent in some classes representing rare
disease groups. Deep learning models tend to usually pick this up and learn the
labels in majority and generalize it over all classes. This does give good accuracy
scores overall; however, it is incorrect. Hence we are in a way forced to look
towards combining results from other models, as every model captures different
sets of features and ensembling these will help overcome the bias towards the
majority label, as we are able to capture a wider range of features, which any
single model might have missed. This also reflects in our results, where we get
far better results when we ensemble different models.

5 Conclusion and Future Work

In this work, an approach that integrates structured and text data features for
ICD-9 code group prediction is presented. To combat the extensive code combi-
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nations, we aggregated them into groups and used frequency-based weights to
handle class imbalance. Pearson correlation was utilized to select models and the
weightage to be given to them in our ensembles. Our study serves as the bench-
mark for better ICD-9 code coverage (combining structured + unstructured
data), patient coverage (every admission instance considered, and neonates also
included), and evaluating relevant metrics like AUROC score and hamming loss.
There is scope to improve performance by better data modeling, exploiting pre-
trained word embeddings, and appropriate fine-tuning of hyperparameters. We
also observe an undeniable trade-off between the AUROC and hamming loss in
our models, and optimizing both would be future work.
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